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The Lyapunov exponents for Anderson localization are studied in a one-dimensional disordered system. A
random Gaussian potential with the power-law decay �1 / �x�q of the correlation function is considered. The
exponential growth of the moments of the eigenfunctions and their derivative is obtained. Positive Lyapunov
exponents, which determine the asymptotic growth rate, are found.
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In this Brief Report we consider Anderson localization
�1,2� in a one-dimensional disordered system with a long-
range memory. The recent realization of disordered systems
by using ultracold atoms �3,4� in optical lattices and micro-
wave realization of the Hofstadter butterfly �5� show that the
random potential in the experiments are highly correlated.
The increased interest in the problem of Anderson localiza-
tion in random potentials with long-range correlations is also
relevant to studies of the metal-insulator transition �6,7�.

Anderson localization in a one-dimensional disordered
system is described in the framework of the eigenvalue prob-
lem

���x� = −
d2

dx2��x� − V�x���x� , �1�

with a Gaussian random potential V�x�. The long-range
memory of the disorder is modeled by the two-point corre-
lation function C�x� with the power-law decay at the large
scale

�V�x��V�x�� = Cq�x − x�� =
Cq

�x − x��q
, �2�

where q�0. Spectral properties of the random operator of
Eq. �1� �and its discrete counterpart� were studied �8–10� and
a rigorous result on localization of Eq. �1� with the power-
law correlation functions was stated in �9�. It has also been
shown by various techniques under study of the metal-
insulator transition that all eigenfunctions are localized for
correlated potentials with the correlation decay rate 0�q
�1 �7,11–14�. Due to the physical interpretation, see discus-
sion in Ref. �6�, one of the main results is the absence of the
absolutely continuous spectra for the random Schrödinger
operator Eq. �1� with the correlation properties due to Eq.
�2�. This means that the eigenfunctions ��x� are localized
and investigation of Lyapunov exponents is a serious task
related to localization of the eigenfunctions.

The Lyapunov exponents are important in spectral theory,
since they govern the asymptotic behavior of the wave func-
tions. They are defined on the asymptotic behavior of the
averaged envelope �s���=limx→�

�ln �2�x��
2x . It was shown by

rigorous analysis that the positive Lyapunov exponents are
absent for the absolutely continuous spectrum, while the
positiveness of the Lyapunov exponents ensures that the
spectrum is pure point �10,15�.

In this Brief Report, we calculate ��2�x�� of solutions of

Eq. �1� for a certain energy �, with given boundary condi-
tions at some point, for example ��x=0� and ���x=0�,
where prime means the derivative with respect to x. Since the
distribution of random potentials is translationally invariant,
it is independent of the choice of the initial point as x=0. It
will be shown that this quantity grows exponentially with the
rate ����=limx→�

ln��2�x��
x �0. Note that it is different from �s,

which supposes a knowledge of all the even moments
�16–19�.

We develop a general procedure which is suitable for cal-
culation of all moments of the wave function and its first
derivative. To this end the Schrödinger Eq. �1� is considered
as the Langevin equation and the x coordinate as a formal
time. For the � correlated process it can be easily mapped on
the Fokker-Planck �diffusion� equation for the probability
distribution function P�� ,��� �15,20�. Unlike this, the two-
point correlation function Eq. �2�, which corresponds to the
stationary process, leads to additional integration over the
formal ”time” with a memory kernel. The method of consid-
eration enables one to observe the exponential growth of
��2�x�� with the Lyapunov exponent �����0.

Since the Schrödinger Eq. �1� is a linear stochastic equa-
tion, equations for the 2n moments of the type

Mk,l�x� = ����x��k����x��l�, k + l = 2n, k,l = 0,1,2, . . . ,

�3�

can be obtained in the closed form. To this end we rewrite
Eq. �1� in the form of the Langevin equation. The x coordi-
nate is considered as a formal time on the half axis x		, 	
� �0,��, and the dynamical variables u�	�=��x�, v�	�= u̇
=���x� are defined. In the variables the Langevin equation
reads

u̇ = v, v̇ = − �� + V�	��u , �4�

where V�	� is now the long-range correlated noise

C
�	� =
C


	1+
 . �5�

It is convenient to set q=1+
 and Cq	C
. In the variables
the expectation values of Eq. �3� are now Mk,l�	�= �ukvl�.
Solutions of Eq. �4� are obtained as functionals
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v�t� = − 

0

t

�� + V�	��u�	�d	, u�t� = 

0

t

v�	�d	 . �6�

Following Ref. �18� we obtain a temporal equation for the
moments from the Langevin Eq. �4� and its solutions Eq. �6�.
Differentiating Mk.l�	� with respect to 	, we obtain

Ṁk,l = kMk−1,l+1 − l�Mk+1,l−1 − l�V�t�uk+1vl−1� . �7�

The application of the Furutsu-Novikov formula �21� to the
last term in Eq. �7� yields

�V�t�F�V�t��� = 

0

t

d	��V�t�V�	���� �F�V�	��
�V�	��

� . �8�

Equation �7� is not a closed equation and can be a starting
point for approximations �see, e.g., �22��. Here we use the
following approach to close the equation. The main obstacle
is the variational derivative � �F�V�	��

�V�	��
�. As seen from the solu-

tions of Eq. �6� the variational derivative cannot be written in
a closed form. It can be found explicitly for the � correlated
noise. Therefore, taking this expression for t�	��	, we ob-
tain Eq. �8� in the explicit form �23�



0

t

d	C�t − 	�� �F�V�	��
�V�	� �

= − �l − 1�

0

t

C
�t − 	�Mk+2,l−2�	�d	 . �9�

Here the solution of Eq. �6� is used to obtain the functional
derivative of the functional F�V�	��=uk+1vl−1. Substituting
the solution of Eq. �9� in Eq. �7�, we obtain that the temporal
behavior of the moments is described by the fractional-
differential equation

Ṁk,l = kMk−1,l+1 − l�Mk+1,l−1 + l�l − 1�Dt

Mk+2,l−2, �10�

where the convolution integral in Eq. �9� is the fractional
derivative Dt


f�t�

Dt

f�t� = C



0

t f�	�d	

�t − 	�1+
 . �11�

Here the correlation function C
�t� defines the memory ker-
nel or the causal function. Equations �10� and �11� are rel-
evant to the fractional Fokker-Planck equations which de-
scribe a variety of physical processes related to fractional
diffusion �24–26�. An important technique for the treatment
of the fractional equation is the Laplace transform. It is
worth stressing that both analytical properties of this frac-
tional integration and the Laplace transform depend on 
.

For −1�
�0 Eq. �10� is readily solved by means of the

Laplace transform. Defining L̂�Mk,l�t��=M̃k,l�s�, one obtains

from Eq. �11� L̂�Dt

Mk,l�t��=C
��−
�s
M̃k,l�s�, where ��
�

is the gamma function. For simplicity, disregarding the sign
of the correlation function Eq. �5�, we set C
=2
2 /��−
�,
where the variance 
2= �V2�0�� determines the amplitude of
the noise. Then, we introduce 2n+1-dimensional vectors
Mn�t�= �M2n,0 ,M2n−1,1 , . . . ,M1,2n−1 ,M0,2n� in the “time”

space and M̃n�s�= L̂�Mn�t�� in the Laplace space, corre-

spondingly. Then the solution of Eq. �10� is the Laplace in-
version of the following vector

M̃n�s� =
1

s − An�s�
Mn�0� , �12�

where �2n+1�� �2n+1� matrix An�s� consists of coefficients
from the matrix Eq. �10�. In the limit s→0 the disorder term
of order of s
→� is dominant, and the maximal eigenvalues
of An can be evaluated at the energy �
0. Following Ref.
�19�, it can be proven that for �=0 the maximal eigenvalues
of An behaves for large n as ��s�
s
/3
2/3�2n�4/3. Expand-
ing the initial condition Mn�0� over the eigenfunctions of An,
we obtain that the maximal growth of the nth moment is

Mn�t� = L̂−1� s−
/3

s1−
/3 − 
2/3�2n�4/3�M��0� . �13�

The inverse Laplace transform is the definition of the Mittag-
Leffler function �27�: E1−
/3� 3

4
2/3�2n�4/3t1−
/3�. Asymptotic
behavior of the Mittag-Leffler function for t→� is deter-
mined by the exponential function exp��2n�
�4/�3−
�t�.
Therefore the exponential growth of the nth moment is due
to the Lyapunov exponent

��0� � �2n�
�4/�3−
� �14�

for −1�
�0.
For 
�0 the fractional integral diverges. To overcome

this obstacle, one considers the causal function as a general-
ized function and a suitable regularization procedure can be
carried out see, e.g, �25,26�. Let N−1�
�N, where N�1
is an integer. Again, using the composition rule, one obtains
the Riemann-Liouville fractional integral Eq. �11� in the
regularized form

Dt

f�t� = Dt

NDt

−Nf�t� 	 DRL


 f�t�

=
1

��N − 
�
dN

dtN

0

t f�	�d	

�t − 	�1+
−N . �15�

Thus Eq. �10� reads

Ṁk,l = kMk+1,l−1 − l�Mk+1,l−1 + l�l − 1�DRL

 Mk+2,l−2. �16�

This fractional equation of the order of 
 must be equipped
with N−1 quasi-initial conditions: in addition to the initial
conditions Mk,l�0�, one has to know N−1 fractional deriva-
tive of Mk,l�	� at 	=0. Application of the Laplace transform
to the fractional derivative yields �25�

L̃�DRL

 Mk,l�t�� = s
M̃k,l�s� − ��

p=0

N−1

spDRL

−1−pMk,l�t��t=0. �17�

In the asymptotic limit s→0 we obtain that the solution of
Eq. �16� is approximated by the inverse Laplace transform of
the vector

M̃n�s� 

1

s − An�s�
�In − BnDRL


−1�Mn�0� , �18�

where In is an unit matrix and matrix Bn consists of the
off-diagonal elements which produce Mk+2,l−2 terms in Eq.
�16�.
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Since we are seeking the maximal growth rate of the so-
lution of Eq. �16� and the initial condition are not important
for this growth, we choose the initial condition as the eigen-
vector of the maximal eigenvalue of the matrix An. In what
follows we consider a temporal behavior of the second mo-
ments described by 3�3 matrix A1�s�. The eigenvalues of
the matrix are roots of a cubic equation �28�. The growth rate
is determined by the eigenvalue with the largest real part that
will be denoted by �. Taking the initial condition in Eq. �18�
as the eigenfunction of �, namely −M��0�, we obtain that
the dynamics of the second moments is due to the Laplace
inversion

M1�t� � L̂−1����s� − s�−1� . �19�

For small s the eigenvalues ��s� correspond to a “weak”
disorder in the Laplace space. Therefore the high-energy
limit is valid ��s�
s
 / �̄, where �̄�s
 �15,28�, and the en-
ergy is scaled �̄=� /
2. Substituting this eigenvalue in Eq.
�19� and expanding the denominator we have for the inte-
grand �n=0

� �̄n−1�1 /s��
−1�n+
. Carrying out the Laplace inver-
sion, we obtain the solution in the form of another definition
of the Mittag-Leffler function �see, e.g., �25,29��
E
−1,
��̄t
−1�=�n=0

� ��t
−1�n

��n
−n+
� . Therefore

M1�t� � �̄t
−1E
−1,
��̄t
−1� . �20�

Since the argument of the Mittag-Leffler function is positive
�t
−1�0, then the asymptotic behavior is approximately
E�,��z�
z�1−��/� exp�z1/�� for z→� for all values � �27,29�.
Therefore, when �t
−1→� the exponential growth of the
second moment

M1�t� � exp�����t� �21�

is approximated by the Lyapunov exponent

���� � � �


2�1/�
−1�

. �22�

Another way to obtain the Lyapunov exponents avoiding
the difficulties related to the N−1 quasi-initial conditions in
Eqs. �16� and �17� is to discard the causality principle and
extend the consideration of the random process on the entire
x axis x� �−� ,+��. For this formal consideration, the
Furutsu-Novikov formula in Eq. �9� reads

− �l − 1�C


−�

x Mk+2,l−2�y�
�x − y�1+
 dy for x � 0,

− �l − 1�C


x

� Mk+2,l−2�y�
�y − x�1+
 dy for x � 0. �23�

Setting again C
=1 /��−
�, we obtain that Eq. �23� is the
definition of the Riesz/Weyl fractional derivative Wx


 see,
e.g, �25,26,29�. Therefore, Eq. �10� now reads

d

dx
Mk,l = kMk−1,l+1 + l�Mk+1,l−1 + l�l − 1�Wx


Mk+2,l−2. �24�

A specific property that we use is the fractional differentia-
tion of an exponential Wx


 exp��x�=�
 exp��x�. Substituting
this in Eq. �7�, one seeks the solution for the maximal mo-
ment growth Mk,l�x�=exp���x�Mk,l�x=0�, where plus stays
for x�0 and minus for x�0, respectively. One readily
checks that the both cases yield the same algebraic equation

�Mn = An���Mn, �25�

where the moment vector Mn is defined above and the matrix
An��� is defined from Eq. �24�. Therefore, ����=�
 /�,
where conditions ��� and �
�� are used. Solutions of Eq.
�24� for ���� coincide exactly with the ones obtained in Eqs.
�14� and �22� for all values of 
.

This solution for � also yields conditions of validity of the
solution Eq. �22� for different values of energy �. Indeed, for
0�
�1 Eqs. �21�, �22�, and �25� describe an exponential
growth for asymptotically large energies ��1, since, in this
case, ������ when ��1. On the contrary, when 
�1 the
solution of Eq. �22� is valid for ��1. This follows from the
condition �
��. Note that for large negative values of the
energy ��2����, what corresponds to a simple pole in Eq.
�19� and this is just the Lyapunov exponent �����2����.

In conclusion, we studied the Lyapunov exponents for
Anderson localization in a one-dimensional disordered sys-
tem with a long-range memory. The averaged behavior of the
second moment of the eigenfunction is calculated and its
asymptotic exponential growth for �x�→� is determined by
the Lyapunov exponents for different values of the energy �.
The main result of the study is the existence of the positive
Lyapunov exponents �����0 for the rate q=1+
�0 of the
power-law decay of the correlation function. It is relevant to
the exponential localization of the eigenfunctions of the ran-
dom Schrödinger operator of Eq. �1�.

It should be admitted that Eq. �10� is not exact. The main
obstacle in the Furutsu-Novikov formula is an absence of a
closed form for the variational derivative �F�V�	��

�V�	��
. It can be

found explicitly for the � correlated noise �23�. In the general
case, Eq. �7� is a starting point for a perturbation approach
�see, e.g., Ref. �22��, which is developed for the correlation
function �V�t�V�t���. Here, fractional Eq. �10� is exact for the
truncated correlation function: C�x−x���1 / �x−x��q for �x
−x���X0 and C�x−x��	0 for �x−x���X0. Therefore the per-
formed approximated mapping of the Langevin equation on
the fractional Fokker-Planck equation and the Lyapunov ex-
ponents obtained here must be verified with other methods.
For example, it can be compared with results obtained by
solving the Langevin equation. Such an analytical treatment
is beyond the scope of present consideration, and this impor-
tant question is aimed for future studies �30�.
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